• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • News
  • About Us
  • Contact Us
  • Disclaimer
  • Work With Us

APlusTopper News

All about entrance exams, schools, colleges, universities and government jobs

  • Common Entrance Exams
  • University
  • Aptitude
  • Govt Jobs
  • Banking

Equations and Inequations Questions for IBPS RRB

March 29, 2019 by Prasanna Leave a Comment

Equations and Inequations Questions for IBPS RRB

Equations and Inequations Questions for IBPS RRB 2017 Exam

In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer. (IBPS RRB Scale-I Prelim Exam 2017)

(a) if x > y
(b) if x ≥ y
(c) if x < y
(d) if x ≤ y
(e) if x = y or no relationship can be established

Quantitative Aptitude

1. (I). x2 + 9x + 20 = 0
(II). y2 = 16

2. (I). x2 – 7x + 12 = 0
(II). 3y2 – 11y + 10 = 0

3. (I). x2 – 8x + 15 = 0
(II). y2 – 12y + 36 = 0

4. (I.) 2x2 + 9x + 7 = 0
(II). y2 + 4y + 4 = 0

5. (I). 2x2 + 9x + 7 = 0
(II). 2y2 + 13y + 21 = 0

6. (I). 6x2 + 25x + 24 = 0
(II). 12y2 + 13y + 3 = 0

7. (I). 12x2 – x – 1 = 0
(II). 20y2 – 41y + 20 = 0

8. (I). 10x2 + 33x + 27 = 0
(II). 5y2 + 19y + 20 = 0

9. (I). 15x2 – 29x – 14 = 0
(II). 6y2 – 5y – 25 = 0

10. (I). 3x2 – 22x + 7 = 0
(II). y2 – 20y + 91 = 0

Equations and Inequations Questions for IBPS RRB 2017 Answers
1. 
(d)
(I). x2 + 9x + 20 = 0
x2 + 5x + 4x + 20 = 0
x(x + 5) + 4(x + 5) = 0
(x + 4)(x + 5) = 0
x = -4, -5
(II). y2 = 16
y = ± 4
∴ x ≤ y

2. (a)
(I). x2 – 7x + 12 = 0
x2 – 4x – 3x + 12 = 0
x(x – 4) – 3(x – 4) = 0
x = 3, 4
(II). 3y2 – 11y + 10 = 0
3y2 – 6y – 5y + 10 = 0
3y(y – 2) – 5(y – 2) = 0
(3y – 5)(y – 2) = 0
\(\mathrm { y } = 2 , \frac { 5 } { 3 }\)
∴ x > y

3. (c)
(I). x2 – 8x + 15 = 0
x2 – 3x – 5x + 15 = 0
x(x – 3) – 5(x – 3) = 0
(x – 3)(x – 5) = 0
x = 3, 5
(II). y2 – 12y + 36 = 0
y2 – 6y – 6y + 36 = 0
y(y – 6) -6(y – 6) = 0
(y – 6)(y – 6) = 0
y = 6
∴ x < y

4. (e)
(I). 2x2 + 9x + 7 = 0
2x2 + 7x + 2x + 7 = 0
x(2x + 7) + 1(2x + 7) = 0
(x + 1)(2x + 7) = 0
\(x = – 1 , – \frac { 7 } { 2 }\)
(II). y2 + 4y + 4 = 0
y2 + 2y + 2y + 4 = 0
y(y + 2) + 2(y + 2) = 0
(y + 2)(y + 2) = 0
y = – 2, – 2
∴ No relation.

5. (d)
(I). 2x2 + 15x + 28 = 0
2x2 + 8x + 7x + 28 = 0
2x(x + 4) + 7(x+ 4) = 0
(x + 4)(2x + 7) = 0
\(x = \left( – \frac { 7 } { 2 } \right) , – 4\)
(II). 2y2 + 13y + 21 = 0
2y2 + 7y + 6y + 21 = 0
y(2y + 7) + 3(2y + 7) = 0
(y + 3)(2y + 7) = 0
\(y = – 3 , \frac { – 7 } { 2 }\)
x ≤ y

6. (c)
(I). 6x2 + 25x + 24 = 0
⇒ 6x2 + 16x + 9x + 24 = 0
⇒ 2x(3x + 8x) + 3(3x + 8) = 0
⇒ (2x + 3)(3x + 8) = 0
\(\therefore \quad x = \frac { – 3 } { 2 } , \frac { – 8 } { 3 }\)
(II). 12y2 + 13y + 3 = 0
⇒ 12y2 + 9y + 4y + 3 = 0
⇒  3y(4y + 3) + 1(4y + 3)
⇒ (4y + 3)(3y + 1)
\(\therefore \quad y = \frac { – 3 } { 4 } \frac { – 1 } { 3 }\)
∴ x < y

7. (c)
(I). 12x2 – x – 1 = 0
⇒ 12x2 – 4x + 3x – 1
⇒ (4x + 1)(3x – 1) = 0
\(\Rightarrow \therefore \mathbf { x } = – 1 / 4,1 / 3\)
(II). 20y2 – 41y + 20 = 0
⇒ 20y2 – 25y – 16y + 20 = 0
⇒ 5y(4y -5) -4(4y – 5)
⇒ (5y -4)(4y – 5)
\(\therefore \quad y = \frac { 5 } { 4 } , \frac { 4 } { 5 } \Rightarrow x < y\)

8. (b)
(I). 10x2 + 33x + 27 = 0
⇒ 10x2 + 15x + 18x + 27 = 0
⇒ 5x(2x + 3) +9(2x + 3) = 0
⇒ (5x + 9)(2x + 3)
\(\therefore \quad x = – 9 / 5 , – 3 / 2\)
(II). 5y2 + 19y + 18 = 0
5y2 + 10y + 9y + 18 = 0
5y(y + 2) + 9(y + 2) = 0
(5y + 9)(y + 2) = 0
\(\therefore \quad y = – 9 / 5 , – 2\)
∴ x ≥  y

9. (d)
(I). 15x2 – 29x – 14 = 0
⇒ 15x2 – 35x +6x – 14 = 0
⇒ 5x(3x – 7) + 2(3x – 7)
⇒ (5x + 2)(3x – 7)
\(\therefore \quad x = \frac { – 2 } { 5 } , \frac { 7 } { 3 }\)
(II). 6y2 – 5y – 25 = 0
⇒ 6y2 – 15y + 10y – 25 = 0
⇒ 3y(2y – 5) + 5(2y – 5)
⇒ (3y + 5)(2y – 5)
\(\therefore \quad y = – 5 / 3,5 / 2\)
∴ So, relationship between x and y can’t be determined.

10. (e)
(I). 3x2 – 22x + 7 = 0
3x2 – 21x – x + 7 = 0
x(3x – 1) – 7(3x – 1) = 0
(3x – 1)(x – 7) = 0
\(x = \frac { 1 } { 3 } , 7\)
(II). y2 – 20y + 91 = 0
y2 – 13y -7y + 91 = 0
y(y – 13) – 7(y – 13) = 0
(y – 13)(y – 7) = 0
\(y = 13,7 \Rightarrow y \geq x\)

Equations and Inequations Questions for IBPS RRB 2015 Exam

In the following questions two equations numbered I and II are given. You have to solve both the questions and
Give answer (a) if x > y
Give answer (b) if x ≥ y
Give answer (c) if x ≥ y
Give answer (d) if x ≤ y
Give answer (d) if x = y or the relationship cannot be establlished betweeb ‘x’ and ‘y’.
(IBPS RRB 2015)

1. (I). x2 + 5x + 6 = 0
(II). y2 + 3y + 2 = 0

2. (I). x2 –  10x + 24 = 0
(II). y2 – 9y + 20 = 0

3. (I). (x2 )2 = 961
(II). y2 = √961

4. (I). x2 –  72 = x
(II). y2 = 64

5. (I). x2 –  463 = 321
(II). y2 – 421 = 308

Equations and Inequations Questions for IBPS RRB 2015 Answers

1. (d)
(I). x2 + 5x + 6 = 0
⇒ x2 + 2x + 3x + 6 = 0
⇒ x(x + 2) + 3(x + 2) = 0
⇒ (x + 2)(x + 3) = 0
∴ x = – 3 or – 2
(II). y2 + 3y + 2 = 0
⇒ y2 + 2y + y + 2 = 0
⇒ y(y + 2) + 1(y + 2) = 0
⇒ (y + 2)(y + 1) = 0
∴ y = – 1 or – 2
∴ x ≤ y

2. (b)
(I). x2 – 10x + 24 = 0
⇒ x2 – 6x – 4x + 24 = 0
⇒ x(x – 6) – 4(x – 6) = 0
⇒  (x – 6)(x – 4) = 0
∴ x= 4 or 6
(II). y2 – 9y + 20 = 0
⇒ y2 – 5y – 4y+ 20 = 0
⇒ y(y – 5) – 4 (y – 5) = 0
⇒ (y – 5)(y – 4) = 0
∴ y = 5 or 4
∴ x ≥ y

3. (e)
(I). x2 = 961
⇒ x = ±√961 = ± 31
(II). y = √961 = ± 31
∴ x = y

4. (b)
(I). x2 – x – 72 = 0
⇒ x2 – 9x + 8x – 72 = 0
⇒ x(x – 9) + 8 (x – 9) = 0
⇒ (x + 8)(x – 9) = 0
∴ x = – 8 or 9
(II). y2 = 64
⇒ y = √64 = ± 8
∴ x ≥ y

5. (e)
(I). x2 = 463 + 321 = 784
∴ x = √784 = ± 28
(II). y2 = 308 + 421 = 729
∴ y = √729 = ± 27

Equations and Inequations Questions for IBPS RRB 2014 Exam

In the following questions two equations numbered I and II are given. You have to solve both the equations and Give Answers if
(a) x > y
(b) x ≥ y
(c) x < y
(d) x ≤ y
(e) x = y or the relationship cannot be established.  (IBPS RRB 2014)
1. 
(I). 20x2 – x – 12 = 0
(II). 20y2 + 27y + 9 = 0

2. (I). x2 – 218 = 106
(II). y2 – 37y + 342 = 0

3. (I). \(\frac { 7 } { \sqrt { x } } + \frac { 5 } { \sqrt { x } } = \sqrt { x }\)
(II). \(y ^ { 2 } – \frac { ( 12 ) ^ { 5 / 2 } } { \sqrt { y } } = 0\)

4. (I). \(\sqrt { 361 } x + \sqrt { 16 } = 0\)
(II). \(\sqrt { 441 } y + 4 = 0\)

5. In a family, a couple has a son and daughter. The age of the father is three times that of his daughter and the age of the son is half of his mother. The wife is nine years younger to her husband and the brother is seven years older than his sister. What is the age of the mother? (IBPS RRB 2014)
(a) 40 years
(b) 45 years
(c) 50 years
(d) 60 years
(e) 65 years

Equations and Inequations Questions for IBPS RRB 2014 Answers

1. (b) (I). 20x2 – x – 12 = 0
⇒ 20x2 – 16x – 15x – 12 = 0
⇒ 4x – (5x – 4) + 3(5x – 4) = 0
⇒ (5x – 4)(4x + 3) = 0
⇒ 5x – 4 = 0 or 4x + 3 = 0
\(\Rightarrow x = \frac { 4 } { 5 } \text { or } \frac { – 3 } { 4 }\)
(II). 20y2 + 27y + 9 = 0
⇒ 20y2 + 15y + 12y + 9 = 0
⇒ 5y(4y + 3) + 3(4y + 3) = 0
⇒ (4y + 3)(5y +3) = 0
\(\Rightarrow y = \frac { – 3 } { 5 } \text { or } \frac { – 3 } { 4 }\)
Clearly, x ≥ y

2. (d) (I).  x2 = 106 + 218 = 324
∴ x = √324 = ± 18
(II). y2 – 37y + 342 = 0
⇒ y2 – 18y – 19y + 342 = 0
⇒ y(y – 18) 19(y – 18) = 0
⇒ (y – 18)(y – 19) = 0
⇒ y = 19 or 18

3. (e) (I). \(\frac { 7 } { \sqrt { x } } + \frac { 5 } { \sqrt { x } } = \sqrt { x }\)
⇒ 7 + 5 = √x × √x
⇒ x = 12
(II). \(y ^ { 2 } – \frac { ( 12 ) ^ { 5 / 2 } } { \sqrt { y } } = 0\)
\(\Rightarrow y ^ { 2 + \frac { 1 } { 2 } } – ( 12 ) ^ { ( 5 / 2 ) } = 0\)
\(\Rightarrow y ^ { 5 / 2 } = 12 ^ { 5 / 2 }\)
⇒ y = 12

4. (c) (I). 19x + 4 = 0
⇒ 19x = – 4
\(\Rightarrow x = \frac { – 4 } { 19 }\)
(II). 21y + 4 = 0
\(\Rightarrow y = \frac { – 4 } { 21 }\)

5. (d)
Let the mother’s age be y years.
∴ The age of father = (y + 9) years
The age of son \(= \frac { y } { 2 }\)years
The age of daughter \(= \left( \frac { y } { 2 } – 7 \right)\)years
Now according to the given condition,
\(( y + 9 ) = 3 \left( \frac { y } { 2 } – 7 \right)\)
\(\Rightarrow y + 9 = \frac { 3 y – 42 } { 2 }\)
⇒ 2y + 18 = 3y – 42
⇒ y = 60 years

Equations and Inequations Questions for IBPS RRB 2013 Exam

1. The present ages of Trisha and Shalini are in the ratio of 7 : 6 respectively. After 8 years the ratio of their ages will be 9 : 8. What is the difference in their ages  (IBPS RRB 2013)

(a) 4 years
(b) 8 years
(c) 10 years
(d) 12 years
(e) None of these

In the following questions two equations numbered I and II are given. You have to solve both equations and Give answer if
(a) x > y
(b) x ≥ y
(c) x < y
(d) x ≤ y
(e) x = y
or the relationship cannot be established   (IBPS RRBs 2013)

2. (I). x2 – 7x + 10 = 0
(II). y2 + 11y + 10 = 0

3. (I). x2 + 28x + 192 = 0
(II).  y2 + 16y + 48 = 0

4. (I). 2x – 3y = – 3.5
(II). 3x – 2y = – 6.5

5. (I). x2 + 8x + 15 = 0
(II). y2 + 11y + 30 = 0

6. (I). x = √3136
(II). y2 = 3136

Equations and Inequations Questions for IBPS RRB 2013 Answers

1. (a)
Let Trisha’s and Shalini’s present ages be 7x and 6x years respectively.
After 8 years, \(\frac { 7 x + 8 } { 6 x + 8 } = \frac { 9 } { 8 }\)
⇒ 56x + 64 = 54x + 72
⇒ 2x = 72 – 64 = 8
⇒ x = 4
∴ Required difference = 7x – 6x ⇒ x = 4 years

2. (a) (I). x2 – 7x + 10 = 0
⇒ x2 – 7x + 10 = 0
⇒ x2 – 5x – 2x + 10= 0
⇒ x(x – 5) – 2(x – 5) = 0
⇒ (x – 2)(x – 5) = 0
⇒ x = 2 or 5
(II). y2 + 11y + 10 = 0
⇒ y2 + 10y + y + 10 = 0
⇒ y(y + 10) + 1(y + 10) = 0
⇒ (y + 10) + (y + 1) = 0
⇒ y = – 1 or – 10

3. (d) (I). x2 + 28x + 192 = 0
⇒ x2 + 16x + 12x + 192 = 0
⇒ x(x + 16) + 12(x + 16) = 0
⇒ (x + 12)(x + 16) = 0
⇒ x = – 12 or – 16
(II). y2 + 16y + 48 = 0
⇒ y2 + 12y + 4y + 48 = 0
⇒ y(y + 12) + 4(y + 12) = 0
⇒ (y + 12)(y + 4) = 0
⇒ y = – 12 or – 4
Clearly, x ≤ y

4. (c)
2x – 3y = – 3.5 —— (i)
3x – 2y = – 6.5 —— (ii)
By equation (i) × 2 – equation (ii) × 3, we have
Equations and Inequations Questions for IBPS RRB 1
\(\Rightarrow \quad x = \frac { 12.5 } { – 5 } = – 2.5\)
From equation (i)
2 × (- 2.5) – 3y = – 3.5
⇒ 3y = – 5 + 3.5
\(\Rightarrow y = \frac { – 1.5 } { 3 } = – 0.5\)
Clearly, x < y

5. (b) (I). x2 + 8x + 15 = 0
⇒ x2 + 5x + 3x + 15 = 0
⇒ x(x + 5) + 3 (x + 15) = 0
⇒ (x + 15)(x + 3) = 0
⇒ x = -5 or -3
(II). y2 + 11y + 30 = 0
⇒ y2 + 6y + 5y + 30 = 0
⇒ y(y + 6) + 5(y + 6) = 0
⇒ (y + 6)(y + 5) = 0
⇒ y = – 5 or – 6
Clearly, x > y

6. (e)
x = √3136 = ± 56
y2 = 3136
⇒ y = √3136 = ± 56
Clearly, x = y

Filed Under: Aptitude Tagged With: Equations and Inequations Questions for IBPS RRB

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • LIC AAO Admit Card 2021 | Download LIC AAO Mains Admit Card @ licindia.in
  • KVPY Admit Card 2021 | Download Your KVPY Hall Ticket Here
  • KVS Admit Card 2021 | KVS Interview Call Letter, KVS Admit Card, Download Process
  • HP TET Admit Card 2021 | Himachal Pradesh TET Hall Ticket (TGT, JBT, Shastri, Language Teacher)
  • OUCET (CPGET) 2021 | Important Dates, Eligibility, Admit Card, Exam Pattern
  • Gauhati University Admit Card 2021 (Released) | Download GU Admit Card BA, B.Sc, B.Com from Here
  • Bihar Board 10th Admit Card 2021 | Download Bihar Board 10th Admit Card from Here
  • RMLAU Admit Card 2021 | Download Avadh University BA, B.Sc, B.Com Admit Card from Here
  • EPFO Admit Card for SSA 2021 | Download EPFO Prelims Social Security Assistant Call Letter
  • BSE Odisha Admit Card 2021 | BSE Odisha 10th Admit Card Download Process and Details
  • RBSE 10th Admit Card 2021 | Rajasthan Board Secondary Education 10th Admit Card

Categories

  • Aptitude
  • Banking
  • Govt Jobs
  • Indian Army
  • NCVT
  • News
  • RRB
  • Talent Search Exams and Olympiad
  • Uncategorized
  • University

Copyright © 2023 · Magazine Pro on Genesis Framework · WordPress · Log in